Search results for "thermal evaporation"

showing 3 items of 3 documents

Crystal Reorientation and Amorphization Induced by Stressing Efficient and Stable P–I–N Vacuum‐Processed MAPbI 3 Perovskite Solar Cells

2021

Herein, the long-term stability of vacuum-deposited methylammonium lead iodide (MAPbI(3)) perovskite solar cells (PSCs) with power conversion efficiencies (PCEs) of around 19% is evaluated. A low-temperature atomic layer deposition (ALD) Al2O3 coating is developed and used to protect the MAPbI(3) layers and the solar cells from environmental agents. The ALD encapsulation enables the MAPbI(3) to be exposed to temperatures as high as 150 degrees C for several hours without change in color. It also improves the thermal stability of the solar cells, which maintain 80% of the initial PCEs after aging for approximate to 40 and 37days at 65 and 85 degrees C, respectively. However, room-temperature…

Materials scienceCrystal orientationTJ807-83002 engineering and technologyGeneral MedicineQuímicastability010402 general chemistry021001 nanoscience & nanotechnologyperovskite solar cellsEnvironmental technology. Sanitary engineering01 natural sciences7. Clean energyRenewable energy sources0104 chemical sciencesCrystalCrystallographyAtomic layer depositionthermal evaporationcrystal orientationatomic layer deposition0210 nano-technologyTD1-1066Perovskite (structure)Advanced Energy and Sustainability Research
researchProduct

Highly Efficient Thermally Co-evaporated Perovskite Solar Cells and Mini-modules

2020

The rapid improvement in the power conversion efficiency (PCE) of perovskite solar cells (PSCs) has prompted interest in bringing the technology toward commercialization. Capitalizing on existing industrial processes facilitates the transition from laboratory to production lines. In this work, we prove the scalability of thermally co-evaporated MAPbI3 layers in PSCs and mini-modules. With a combined strategy of active layer engineering, interfacial optimization, surface treatments, and light management, we demonstrate PSCs (0.16 cm2 active area) and mini-modules (21 cm2 active area) achieving record PCEs of 20.28% and 18.13%, respectively. Un-encapsulated PSCs retained ∼90% of their initial…

Materials scienceTandembusiness.industryEnergy conversion efficiencyPhotovoltaic system02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesThermal Evaporation0104 chemical sciencesActive layerGeneral Energy:Physics [Science]PhotovoltaicsLight managementOptoelectronicsEnergiaPerovskite Solar Cells0210 nano-technologybusinessCèl·lules fotoelèctriques
researchProduct

Raman signal reveals the rhombohedral crystallographic structure in ultra-thin layers of bismuth thermally evaporated on amorphous substrate

2021

Under the challenge of growing a single bilayer of Bi oriented in the (111) crystallographic direction over amorphous substrates, we have studied different thicknesses of Bi thermally evaporated onto silicon oxide in order to shed light on the dominant atomic structures and their oxidation. We have employed atomic force microscope, X-ray diffraction, and scanning electron microscope approaches to demonstrate that Bi is crystalline and oriented in the (111) direction for thicknesses over 20 nm. Surprisingly, Raman spectroscopy indicates that the rhombohedral structure is preserved even for ultra-thin layers of Bi, down to $\sim 5$ nm. Moreover, the signals also reveal that bismuth films expo…

Materials scienceXRDFOS: Physical scienceschemistry.chemical_element02 engineering and technologySubstrate (electronics)Crystal structure01 natural sciencesBismuthsymbols.namesakeFísica AplicadaMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesGeneral Materials Science010306 general physicsRamanCondensed Matter - Materials ScienceThin layersCondensed Matter - Mesoscale and Nanoscale PhysicsMechanical EngineeringThermal evaporationMaterials Science (cond-mat.mtrl-sci)Trigonal crystal system021001 nanoscience & nanotechnologyCondensed Matter PhysicsEngineering physicsAmorphous solidchemistryMechanics of MaterialsBisymbolsChristian ministry0210 nano-technologyRaman spectroscopyUltra-thin layer
researchProduct